MARK SCHEME for the October/November 2008 question paper

9231 FURTHER MATHEMATICS

9231/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – October/November 2008	9231	02	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – October/November 2008	9231	02	

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2008	9231	02

Qu No	Mark Scher	ne Details			Part Mark	Total
1	Find MI a	about A of AB, AC (M1 for either):	$I_{AB} = (6m/24)(\frac{1}{3}3^2 + 3^2)a^2 = 3ma^2$	M1		
	I_{A}		$I_{AC} = (10m/24)(\frac{1}{3}5^2 + 5^2)a^2$			
			$=(125/9) ma^2$	A1		
	Find MI a	about A of BC:	$I_{BC} = (8m/24)(\frac{1}{3}4^2 + 6^2 + 4^2)a^2$			
			$=(172/9)ma^{2}$	M1 A1		
	Sum to fi	nd MI about A of wire:	$I = (324/9)ma^2 = 36ma^2$	A1	5	[5]
2	Find spee	eds from cons. of energy (M1 for either	r): $\frac{1}{2}mv_1^2 = mga(1 - \cos\theta)$	M1 A1		
			$\frac{1}{2}mv_2^2 = mga\left(1 + \cos\theta\right)$	A1		
	Find R_1 , I	R_2 by radial resolution (M1 for either):	$R_1 = mg\cos\theta - mv_1^2/a$	M1 A1		
			$R_2 = mg\cos\theta + mv_2^2/a$	A1		
	EITHER:	Substitute in R_1 , R_2 and combine:	$R_1 = 3mg\cos\theta - 2mg$			
			$R_2 = 3mg\cos\theta + 2mg$			
			$R_2 - R_1 = 4mg$ A.G.	M1 A1		
	OR:	Combine R_1 , R_2 and substitute:	$R_2 - R_1 = m(v_2^2 + v_1^2)/a$			
			= 4mg A.G.	(M1 A1)	8	[8]
3	EITHER:	Relate angular acceln. to tension for bl	lock: $2ma d^2 \theta / dt^2 = 2mg - T - mg/10$	M1 A1		
		Relate angular acceln. to tension for di	isc: $I d^2 \theta / dt^2 = aT$, $I = \frac{1}{2} ma^2$	M1 A1		
		Eliminate tension <i>T</i> :	$(\frac{1}{2}+2)ma^2 d^2\theta/dt^2 = (2-0.1)mga$	M1		
		Find $d^2 \theta / dt^2$:	19g/25a or 0.76g/a or 7.6/a	A1		
		Use $(d\theta/dt)^2 = 2 d^2\theta/dt^2 2\pi$ ($ \text{ on } d^2\theta$	$\theta' dt^2$): $(d\theta' dt)^2 = 76\pi g/25a$ A.E.F.	M1 A1√		
		Find $d\theta/dt$ (A.E.F.):	$d\theta/dt = 3.09\sqrt{(g/a)} \text{ or } 9.77/\sqrt{a}$	A1	9	
	OR:	Use conservation of energy for system	1: $\frac{1}{2}I (d\theta/dt)^2 + \frac{1}{2} 2m (a d\theta/dt)^2$	(M1 A1)		
			$= 2mga\theta - 0.1 mga\theta$	(M1 A1)		
		Put $\theta = 2\pi$ and find $d\theta/dt$ (A.E.F.):	$d\theta/dt = 3.09\sqrt{(g/a)} \text{ or } 9.77/\sqrt{a}$	(M1 A1)		
		Differentiate energy eqn w.r.t. t:	$(5ma^2/4) 2 d^2\theta/dt^2 = 1.9 mga$	(M1 A1)		
		Find $d^2 \theta / dt^2$:	19g/25a or 0.76g/a or 7.6/a	(A1)	(9)	[9]

		Page 5	M	ark Scheme	Syllabus	Pape	Paper			
			GCE A LEVEL -	- October/November 2008	9231	02				
Qu No	Mark	Scheme Details				1	Part Mark	Total		
4	(i)	Use conser	vation of momentum:	$0.1v_A + mv_B = 0.1 \times 5 -$	$m \times 2$ M	1				
		Find <i>m</i> :		$m = (0.5 - 0.1 v_A) / (2 + v_B)$	Al	1				
		Use $v_A > 0$	to find lower bound on <i>r</i>	$m: v_B > 0, \ m < 0.5/2 = 0.25 \ A$	A.G. M	1 A1	4			
	(ii)	Use Newto	n's law of restitution:	$v_B - v_A = \frac{1}{2}(2+5) = \frac{7}{2}$	М	1 A1				
		Put $m = 0.2$	2 and find one of v_A , v_B :	$2 v_B + v_A = 1, v_A = -2 \text{ or } v_B =$	1.5 M	1 A1				
		Find magn	itude of impulse [N s]:	$0.1 (5 - v_A) \text{ or } 0.2 (1.5 + 2) =$	= 0·7 M	1 A1	6	[10]		
5	Find	l equation of r	notion at general point:	$m d^2 x/dt^2 = mg ((a-x)/a)^{\frac{1}{2}}$						
				$-mg((a+x)/a)^{-1/4}$	М	1				
	Expa	and terms and	approximate:	$\approx mg((1-x/2a) - (1-x))$	c/4 <i>a</i>)) M	1 A1				
	Sim	plify to give S	HM eqn:	$\mathrm{d}^2 x/\mathrm{d}t^2 = -gx/4a$	Al	1	4			
	Use	SHM eqn to f	find speed when $x = 0$:	$v_{max}^2 = (g/4a) (0.04a)^2$	М	1 A1				
	Sim	plify (A.E.F.)	$2\sqrt{a}$ A1	1						
	Use	SHM eqn to f	find time when $v = \frac{1}{2}v_{max}$	$_{x}$: $\frac{1}{2}a\omega = a\omega\sin\omega t$ (A.E.F.)	М	1 A1				
	Subs	stitute $\omega = \sqrt{g}$	g/4 <i>a</i>) and simplify:	$t = \sqrt{(4a/g) \sin^{-1} \frac{1}{2}}$	М	1				
				= $(\pi/3) \sqrt{(a/g)}$ (A.E.F.)	Al	1	7	[11]		
6	Use	standard form	nula for pooled estimate,	e.g.: $((128 - 15^2/5) + (980 - 36^2/5))$	10))/13 M	1				
	Awa	ard A1 for one	e term in numerator, e.g.:	: $5 \times 16.6 \text{ or } 10 \times 85.04 \text{ or } 83$	or 850·4					
				or 4×20.75 or 9×94	5 A1	1				
	Calc	culate value of	pooled estimate:	71.8	Al	1	3	[3]		
7	(i)	Find sample	mean:	$\overline{x} = \frac{1}{2}(61.21 + 64.39) = 62.8$	М	1 A1				
		Use confider	nce interval formula:	$\overline{x} \pm ts/\sqrt{n}$ for any t	М	1				
		Use correct t	abular <i>t</i> :	$t_{24,099} = 2.492$	Al	1				
		Calculate sta	ndard deviation:	$s = 1.59 \times 5 / 2.492 = 3.19$	Al	l	5			
	(ii)	State assump	otion (A.E.F.):	Population has normal distributi	on B1	l	1			
	(iii)	State valid re	eason (A.E.F.):	72 exceeds upper limit of interva	al *E	31				
		State conclus	sion (A.E.F., dep *B1):	Yes, it does reduce pulse rate	B1	L	2	[8]		

	Page 6 Mark		e 6 Mark Scheme		Paper		
		GCE A LEVEL – Oc	tober/November 2008	9231		02	
Qu No	Mark Scheme Detail	ls				Part Mark	Total
8	(i) Formulate t	wo eqns for means:	\overline{y} + 0.425 \overline{x} = 1.28 and	1			
			$\overline{x} + 0.516 \ \overline{y} = 1.05$	М	1		
	Solve for m	leans:	$\bar{x} = 0.499, \ \bar{y} = 1.068 \text{ or}$	r 1.07 M	1 A1	3	
	(ii) Find correla	ation coefficient for sample:	$r^2 = 0.425 \times 0.516; r = -$	0·468 M	1; *A1	2	
	(iii) State hypot	heses:	$H_0: \rho = 0, H_1: \rho \neq 0$	В	1		
	Valid metho	od for reaching conclusion:	$\rho \neq 0$ if $ r >$ tabular value	М	1		
	Use of corr	ect tabular value:	$\rho_{25,2\cdot5\%} = 0.396$	*E	31		
	Correct con	clusion (A.E.F., dep *A1, *B	1): Coefficient does differ from	n zero A	1	4	[9]
9	Integrate $f(t)$ to g	give $F(t)$:	$\mathbf{F}(t) = -9/8t^2$	М	1		
	Apply limits:		$F(2.5) - F(2) = -(9/8) (2.5^{-2})$	-2^{-2}) A	1		
	Evaluate and mu	ltiply by 100:	10·125 A.G.	A	1	3	
	State hypotheses	(A.E.F.):	H ₀ : $f(t)$ fits data, H ₁ : does	n't fit B	1		
	Find χ^2 (A1 if at	t least 3 terms correct):	$\chi^2 = 1.5^2/62.5 + 4.875^2/21.$	875			
			$+ 5.875^{2}/10.125 + 2.5^{2}/5.5$	5 M	1 A1		
	Evaluate χ^2 :		= 0.036 + 1.086 + 3.409 +	1.136			
			$= 5.67 [\pm 0.01]$	*/	A 1		
	Compare with co	onsistent tab. value (to 2 dp):	$\chi_{3,0.9}^2 = 6.251$	*E	31√		
	$(\chi_{2, 0.9}^{2})^{2}$	$= 4.605, \chi_{1,0.9}^2 = 2.706)$					
	Consistent concl	usion (A1 dep *A1, *B1):	Distribution fits data (A.E.F	.) M	1√ A1	7	[10]
10	Replace 2^x by e^{kx}	to find <i>k</i> :	$f(x) = ae^{-kx}; k = \ln 2$	М	1; A1		
	Show $a = k$ by e.	g. $\int_0^\infty f(x) = 1:$	$[-(a/k) e^{-kx}]_0^\infty = 1, \ a = k \ or$	ln 2 M	1 A1	4	
	State value of E(<i>X</i>):	1 / ln 2 <i>or</i> 1.44	B	1	1	
	Find distribution	fn G of <i>Y</i> :	$\mathbf{G}(y) = \mathbf{P}(Y \le y) = \mathbf{P}(X \le k^{-1})$	ln y) M	1 A1		
			$= F(k^{-1}\ln y) = (a/k)(1 - e^{-k})$	^{n y}) M	1 A1		
			= 1 - 1/y (CAO)	A	1		
	Find probability	density function g of Y:	$g(y) = 1/y^2$ (CAO)	М	1 A1		
	State interval for	either G or g:	$y \ge 1$	B	1	8	[13]

	Page 7 Mark Schen		Page 7 Mark Scheme		Syllabus		aper	
	GCE A LEVEL – October/November 2008 9231					02		
Qu No	Mark Scheme	e Details					Part Mark	Total
11	EITHER:	Obser	we or deduce when R_B is maximised	d: $R_{B, max}$ occurs when d	og at <i>B</i>	M1		
a		Mome	nts for ladder about A:	$6a R_{B, max} = 4aW +$	$8a \times \frac{1}{4}W$	M1		
	OR:	Mome	nts when dog is x hor. from wall:	$6a R_B = 4aW + (8a)$	$(a-x) \frac{1}{4}W$	(M1)		
		Deduc	e limit on R_B :	$R_{B, max}$ occurs when d	og at <i>B</i>	(M1)		
	Find max.	value o	$f R_B$:	$R_{B, max} = W$		A1		
	Resolve ho	orizonta	lly for ladder AB:	$F_A = R_B$		B1		
	Resolve ve	ertically	for ladder AB:	$R_A = W + \frac{1}{4}W = 5$	5 <i>W</i> /4]	B1		
	Find bound	d on μ	from $F_A \leq \mu R_A$:	$\mu \geq F_A / R_A \geq R_{B, max}$	_w / (5 <i>W</i> /4)	M1		
				$\mu \geq 4/5$ A.G.		A1	7	
	Find friction	on F _{cube}	along DE by hor. resolution:	$F_{cube} = F_A \text{ or } R_B$		B1		
	Find reacti	on R_{cube}	from floor by vert. resolution:	$R_{cube} = W + \frac{1}{4}W + \frac{1}{$	kW	B1		
	Show that	$F_{cube} \leq$	μR_{cube} :	$\mu R_{cube} \geq W + 4kW/2$	$5 \geq W$			
				$= R_{B, max} \geq F_c$	ube	M1 A1	4	
	Find mome	ents abo	out D opposing effect of R_{cube} :	2akW + a5W/4 - 4	$a F_A$	M1		
	Find small	est valu	the of k for which moments ≥ 0 : (4)	W - 5W/4) / 2W = 11/8		M1 A1	3	[14]
11 b	State hypo	theses	(A.E.F.):	H ₀ : $\mu_2 = \mu_1$, H ₁ : μ_2	$> \mu_1$	B1		
D	Calculate	$\Sigma(x_i-z)$	$(\overline{x})^2$ (M1 for either)	8.24, 4.62[4]				
	or estimate	e varian	ces:	0.168 or 0.165, 0.0784	or 0.0771	M1 A1 A1		
	Find s^2 (M	10 if inc	consistent denominators used):	$s^2 = 0.168/50 + 0.0784/$	/60			
				or $0.165/49 + 0.0771/59$)			
				[= 0.00467]		*M1		
	Find value	of z (dep *M1):	$z = (1803 \cdot 6/60 - 1492 \cdot 6)$	0/50) / s	M1		
				=(30.06-29.84)/0.06	83 = 3.22	*A1		
	S.R	. Using	g pooled estimate of variance:	$s^2 = (8.24 + 4.62)/108$	= 0.119	(M0)		
				$z = 0.22 / s \sqrt{(1/50 + 1/6)}$	50) = 3.33	(B1)		
	Find tabula	ar. valu	e (to 2 dp):	$\Phi^{-1}(0.98) = 2.05[4]$		*B1		
	Compare v	alues fo	or conclusion (A1 dep *A1, *B1):	$\mu_2 > \mu_1$ (A.E.F., M1 $\sqrt{0}$ or	n values)	M1√A1	10	
	Find limiti	ng valu	e of z (to 2 dp):	z = (0.22 - 0.1)/s = 1.5	756	M1 A1		
	Find $\Phi(z)$:	and hen	ce values of α (to 1 dp):	$\Phi(z) = 0.9604, \ \alpha \ge 3.9$	0 or 4.0	M1 A1	4	
	$s^2 =$	= 0.119	gives:	$z = 1.816, \ \alpha \ge 3.47$		(M1 M1)		[14]